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Flow in the half-filled annulus between horizontal 
concentric cylinders in relative rotation 
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Taiwan. ROC 

(Received 19 October 1988 and in revised form 31 March 1989) 

Experimental and theoretical results are presented for the flow in a half-filled 
annulus between horizontal concentric cylinders with the inner one rotating and the 
outer one at  rest. A laser-Doppler velocimeter was used to measure the mean 
tangential and/or corresponding turbulent velocity distributions for both the 
laminar and turbulent regimes. Colour dyes were also used to visualize the flow 
patterns. The Reynolds number based on the gap width varied from 67 to 3242, 
which corresponds to a Taylor number ranging from 25 to 1200. From the graph of 
local moment coefficient versus Taylor number and the visualization results, 
laminar, transition and turbulent regimes are identified. In the analysis, the 
governing equations are expressed in stream-function and vorticity forms and 
expanded in terms of the power series of the annulus aspect ratio. The zero- and first- 
order solutions are then solved numerically. Various features of the flow, in 
particular the presence of vortices in the exit end region and their absence from the 
entry end region, predicted in the analysis, are confirmed by the experimental 
findings. 

1. Introduction 
Flow in the annulus of concentric cylinders with either one rotating occurs in many 

engineering fields and has important applications in bearing lubrication and 
viscometry. Therefore, work on the topic dates back to 1890, when Couette started 
investigating the flow in the fully filled annulus between concentric rotating 
cylinders. In  such a case, the entire flow field can readily be solved and is frequently 
referred to as Couette shear flow; see White (1978), for example. Consequently, 
subsequent investigations have focused on the stability phenomena, and numerous 
scientists such as Taylor (1923, 1936), Meksyn (1946), Steinman (1956), Stuart 
(1958), Davey (1962), Duty and Reid (1964) and Coles (1965) have done 
experimental, theoretical and numerical studies on the stability and formation of 
Taylor vortices. 

In addition, flow in a partially filled annulus between horizontal concentric 
cylinders with either one rotating also has important applications. For example, a 
newly developed electrogalvanizing line in the steel-making industry utilizes a roller- 
type cell to plate the zinc onto the surface of a steel strip ; see Komoda et al. (1983) 
and Nabatame (1984). There, a steel strip wound around a large-diameter conductor 
roller is soaked in the plating bath. Plating is effected by applying electric currents 

t Current address : Institute of Applied Mechanics, National Taiwan University, Taipei, 
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between the steel strip (cathode) and an arch-shaped zinc anode placed on an outer, 
stationary, cylinder. It has been found that the fluid mechanics in the plating cell has 
a profound influence on the uniformity of the zinc coating on the strip, which 
strongly depends on the roller speed and annulus gap. 

Unfortunately, very few investigations of the flow field in a partially filled annulus 
between concentric cylinders with the inner one rotating appear to have been 
reported in the literature. To the authors’ knowledge, only Brewster, Grosberg & 
Nissan (1959) have done an investigation in an almost, but not entirely, filled 
annulus. However, their analysis and experiments were mainly focused on the 
stability problem in the parallel core flow far from the free surfaces. Moreover, flow 
fields near the two free surfaces were not considered. 

It is the purpose of this study to investigate experimentally and theoretically the 
flow in a half-filled annulus with the inner one rotating and the outer one a t  rest. The 
experimental results are obtained with the aid of a laser-Doppler velocimeter (LDV) 
and colour-dye visualization. Asymptotic expansions in conjunction with the finite- 
difference method are employed to solve the flow field in the laminar regime. From 
these, the streamlines and velocity distributions are obtained and compared with the 
experimental results. The upper limit of the annulus aspect ratio for which 
asymptotic solutions are valid is also discussed. 

Some of the results presented in this paper have been reported briefly a t  the Third 
International Symposium on Transport Phenomena in Thermal Control (see Chen & 
Chan 1988; Chen, Yang & Humphrey 1988). 

2. Experimental study 
2.1. Apparatus and procedure 

The test section had three parts : an inner cylinder, an outer cylinder and rectangular 
container, as shown in figure 1. The rectangular container was made of Plexiglas with 
length 345 mm, width 255 mm, height 271 mm, and thickness 12.5 mm. The inner 
cylinder was made of reinforced plastic with radius R, = 65.5 mm, and axial length 
300 mm. A copper rod of radius 12 mm served as the rotating axis of the inner 
cylinder and was mounted on the two sides of the rectangular container by ball-type 
bearings. The outer cylinder was also made of transparent Plexiglas with radius 
R, = 74.5 mm and was mounted onto the container by six screws. The container was 
filled with water of kinematic viscosity v = 0.9 x m2/s, to the level of the centre 
of the inner cylinder. To prevent some of the water and droplets being carried away 
by the rotating cylinder, wax was coated on the surface of the inner roller. This was 
done by immersing the inner cylinder in a bath of melting wax and then pulling it 
out slowly along its axis. The thickness of the wax was about 0.5 mm. 

A pair of pulleys, one mounted on one end of the rotating axis and one mounted 
on the shaft of a d.c. motor, were connected by string. The rotation speed of the inner 
cylinder could be varied by adjusting the motor speed or by changing the sizes of the 
pulleys. The revolution speed, n, of the inner cylinder in the experiment was in the 
range of 1 to 45 r.p.m., which corresponded to a rotation speed, a( = (27c/60) x n), in 
the range of0.105 to 4.712 rad./s. The Reynolds numberRe( = R,-R,) 12Ri/v), ranged 
from 67 to  3242 at an annulus aspect ratio A (= (R,-Ri)/Ri) = 0.137. The Taylor 
number Ta( = Re A;) ranged from 25 to 1200. To avoid the vibration of the test 
section induced by the d.c. motor, supporting tables for the test section and d.c. 
motor were completely separated. 

The optical components of the laser-Doppler velocimeter consist of one Spectra- 
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physics 3W Argon laser, one-component Dantec 55X series optics (including a 40 
MHz Bragg cell), and an RCA photomultiplier (PM). The signal processors are a 
Dantec 55N11 electronic frequency shifter, a Dantec 55N21 frequency tracker and 
a 16-bit IBM-compatible personal computer for data acquisition, storage and 
reduction. The laser and the optical components are placed on an optical table, which 
is equipped with x-, y- and z-traversing mechanisms. The movement of the table in 
each direction is controlled by a reduced a x .  motor. The traversing distance in each 
direction is measured by a Mitutoyo optical scale with a digital readout in f0.005 
mm increments. The forward scattering mode was employed. This was done by 
placing the PM on the other side of the test section, with an arm connecting the 
supporting table of the PM to the optical table. Movement of the PM detector is 
therefore in phase with the optical table. Mean and turbulent velocities were 
determined from the formulae 
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where N is the number of instantaneous realizations. In  this study N = 500 was used. 
For the measurements, the focal point of the laser beams was adjusted to the middle 
of the test section in the axial direction. The focal length for the object was 310 mm, 
and 150 mm for the detector. A sketch of the optical system and the test apparatus 
is shown in figure 2. 

Red or blue ink was introduced by an injector into the flow for visualization. The 
needle of the injector was placed in the flow through holes drilled on the upper 
surface of the outer cylinder. The injector was equipped with a screw for micro- 
adjusting the amount of ink, and was attached to the container with a supporting 
arm. Snapshots were taken from the front of the test section with an exposure time 
of 0.001 s in most cases. Uniformity of the flow in the axial direction was also checked 
by the colour-dye visualizations and velocity measurements. Results confirm that 
the flow is essentially two-dimensional with no axial variations except for end effects. 

2.2. Results 

All results were obtained when the inner cylinder was rotating a t  a constant angular 
speed in a counter-clockwise direction. For ease of discussion the flow region near the 
free surface where the inner cylinder moves into the fluid is referred to as the 'entry 
region ' ; the 'exit region ' is that where the inner cylinder moves out of the fluid ; and 
the 'core region' is that in the bottom middle portion of the annulus. 

2.2.1. Laminar regime 
The flow patterns a t  the entry, core and exit regions respectively for Ta = 80 and 

A = 0.137 are shown in figure 3(u-c) (Plate 1). These pictures were taken with a 
40 cm focal length. It is seen from figure 3 (a-c) that the rotation of the inner cylinder 
causes the fluid layer adjacent to it to move, owing to the viscous shear, towards the 
free surface a t  the exit end and then make a 180' turn and flow back into the core 
region. As the outer fluid layer flows towards the free surface a t  the entry end, it 
makes another 180' turn and thus forms a two-dimensional recirculation region, in 
a direction opposite to that of the roller. The flow makes a smooth 180' turn a t  the 
entry end but a vortex cell and 'necking ' below the free surface occur in the exit end. 
A close-up photo taken with a 20 cm focal length shows (see figure 3d, Plate 1) that 
there is an even smaller cell right below the necking place. It is seen from figure 3 (c) 
that the streamlines are essentially parallel in the core region. 

The tangential velocity profiles 6 a t  various @sections are depicted in figure 4. 
Notice that 0 is measured counterclockwise with the origin a t  the centre of the inner 
cylinder; and 0 = 0' and 180' correspond to the sections a t  the entry and exit free 
surfaces, respectively. In the plots, coordinates have been normalized according to 

6 = 6 / ( R i f 2 ) ,  B = (r-&)/(Ro-Ri),  (3a, b )  

where r is the radial distance measured from the origin. 
It is seen from figure 4 that there is a zero-crossing point, 3,, in each $-section. The 

inner fluid layer ( B  < B,) moves from the entry end to the exit end; and the outer fluid 
layer ( B  > F c )  moves in the reverse direction. The zero-crossing point, 3,, increases as 
6 increases. However, F, remains almost unchanged, with a value off ,  in the bottom 
core zone (i.e. 60' < 8 < 120'). The maximum speed of the reversed fluid layer and 
its radial location decrease as fluid moves from the exit end to the entry end. For 
example, qmax = 0.55 ( B  = 0.8), 0.33 (3 = 0.66), 0.12 ( B  = 0.39) at 6 = 170°, 90' and 
lo", respectively. Note that the small vortex cell is located in the section where 
8 = 150' - 170'; and V,,, = $ at B = 8 in the bottom core zone. 

1 
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FIGURE 3. Flow pattern at Ta=80 and A=0.137: (a) for entry region, (b) for core region, (c) for exit 
region, (d) close-up view at exit end. 
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(b) 

FIGURE 7. Flow pattern at Ta=117 and A=O.l37: (a) front view, {b) side view. 

Plate 2 
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FIGURE 4. Mean tangential velocity profiles at various @-sections at Ta = 80 and A = 0.137. 
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FIGURE 5. Mean tangential velocity profiles at various @-sections at Ta = 524 and A = 0.137. 
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FIGURE 6. Mean tangential turbulent velocity profiles at various @-sections at Ta = 524 and 
A = 0.137. 
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Radial section (0) (deg.) 10 30 60 90 120 150 170 

zero-crossing point ( B )  0.12 0.19 0.28 0.29 0.32 0.32 0.42 
Max. reversed velocity (c) 0.04 0.12 0.14 0.15 0.15 0.15 0.27 
Position of max. reversed velocity (B )  0.33 0.50 0.55 0.69 0.78 0.79 0.92 

TABLE 1.  Some variables for the mean velocity profiles shown in figure 5 for Tu = 524 and 
A = 0.137 

2.2.2. Turbulent regime 
The profiles of mean tangential and turbulent velocities a t  various 8-sections are 

shown in figures 5 and 6. Table 1 lists the zero-crossing point, the maximum reversed 
velocity and its radial distance for T a  = 524 and A = 0.137 at various cross-sections. 
It can be seen that variations of these quantities are larger in the entry and exit zones 
but smaller in the core zone. However, compared with those in the laminar regime, 
the zero-crossing points move closer to the inner cylinder ; values of the maximum 
reversed velocity and its radial distance a t  each section decrease : that is, the inner 
fluid layer is thinner in the turbulent regime than in the laminar regime. 

Figure 6 shows that at each 8-section turbulent velocity is largest near the inner 
cylinder and smallest near the outer cylinder. This is particularly noticeable near the 
entry region (e.g. a t  8 = lo", 30"). This may be due to the disturbance resulting from 
the motion of the inner cylinder in the fluid. However, the profiles of turbulent 
velocity distributions are quite similar at sections where 8 >, 60", and more uniformly 
distributed compared with those in the entry sections. 

2.2.3. Identi$cation of the flow regimes 
The flow patterns a t  a higher Taylor number, T a  = 117, are shown in figure 7 (a,  b)  

(Plate 2), which shows that there is some irregular mixing in the flow, and 
streamlines are not so clearly distinguished as those shown in figure 3(a-c) for 
T a  = 80. This suggests that flow field a t  T a  = 117 is not in the laminar regime. 

Apart from using flow visualization, attempts were also made to measure the local 
coefficient of moment at various T a  to identify the flow regimes. This is done by 
measuring the mean tangential velocity using LDV at a fixed point 0.3 mm away 
from the inner cylinder a t  a radial section 8 = 135', for various Ta. The local moment 
coefficient, C M , @ ,  can be derived according to 

Notice that in evaluating the shear stress a t  the wall (r = Ri), the term ( & / r )  has been 
neglected since Ar/R,  = 0.3/65.5 -4 1. 

The plot of GM,@ versus T a  a t  8 = 135" is shown in figure 8, from which, together 
with the visualization results, the following flow regimes (labelled 1 4 )  can be 
identified : 

T a  < 92 : laminar 

} transition 92 < T a  < 150 :unstable laminar 
150 < Ta < 500 :turbulent growth 

Ta > 500 :fully turbulent 
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FIQURE 8. Local moment coefficient versus Ta at section 0 = 135'. 

The result obtained by Brewster et al. (1959) in an almost, but not entirely, filled 
annulus shows that the unstable laminar regime occurs a t  Ta = 104. The present 
result shows that transition starts a t  a smaller value, T a  = 92. This is because, as the 
height of free surface above the bottom core decreases, transition starts earlier since 
the vortex cell in the exit end increases its influence on the core flow. 

3. Theoretical study 
3.1. Governing equations 

The governing equations for steady, two-dimensional, incompressible, laminar flow 
written in stream-function and vorticity forms are 

V.( Vw)-vV2w = 0, (5) 

V2$+-W = 0. (6) 

In  the above, V, w ,  and $ are respectively, the velocity, vorticity and stream 
function ; and v is the kinematic viscosity of the fluid. Substituting (6) into ( 5 )  and 
expanding it in cylindrical coordinates yields a single stream function : 

6 FLM 213 
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The boundary conditions are 
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That is, the flow satisfies the no-slip condition on the solid walls and zero-shear stress 
condition on the free surfaces. In the above, V,  and V,  are the velocity components 
in the radial and tangential directions, respectively. In  the present work, free 
surfaces are assumed flat, and results are justified by comparing with the 
measurements (see $4). 

The following dimensionless parameters are used : 

a$* A3(At+ 1 ) y  
a3$* a2@* 

1 ) 3 - + ~ 2 ( ~ t +  q 2 - -  
a43  a t 2  ar 

R,-R, L. r -R ,  , V,=x - 
Ri R o  -R, QRi ' 

A = -  , r=- 

v, $ ' = 

Substituting (14) into (7) yields the dimensionless form 

' '* = (QR,) (R,-R,) ' 

a2$ * 
ar a0 

+ A ~ ( A + +  1 ) 2 - - ; - + ~ 3 ( ~ i +  1)- 

Non-dimensionalizing the boundary conditions (8)-( 13) yields 

(i) for t = 0:  $* = 0, - a$* - - - 1 ;  
ai? 

(ii) for i? = 1 : 

(iii) for 8 = 0,n: 

$ * = - = O .  a$* 

$*=,ep- 

ai? 

a2+* 
- 0. 



Flow in the half-$lled annulus between horizontal cylinders 157 

Inspection of (15)-( 18) reveals that there are two dimensionless parameters, which 
are Re and A ,  or Ta (=  ReAi) and A .  

In the case where R, % d (d  = R,-R,), or A d 1 ,  the flow structure can be divided 
into two parts : (a)  the core flow region, in which the lengthscale of the flow is R, and 
streamlines are parallel; (b)  the two-end zones, in which the lengthscale of the flow 
is d and the flow makes 180' turns along the free surfaces. In what follows regular 
perturbation will be employed to solve the two flow regimes. The continuity 
condition serves as the requirement for matching the core flow with the end zone 
flows. 

3.2. The core flow region 
Since the streamlines in the core region, far away from the two turning ends, are 
parallel as A + 0, we seek a core solution that is independent of 8. That is 

-- - 0 ;  n =  1,2,3 ,.... an$* 

a e n  

Hence, the governing equation (15) can be reduced to 

Equation (20) shows that the core flow is independent of Re. We seek the asymptotic 
solution for the core flow, by a regular expansion in terms of A .  That is, for A d 1, 

= $: = $o+A$,+A2$,+. . .  . ( 2 1 )  

Substituting ( 2 1 )  into (20) and equating terms of like order in A yields a sequence of 
linear differential equations for the unknown functions $, as follows : 

(i) O(Ao):  

(ii) O(A1): 

Similarly, rearrange the boundary conditions of like order in A to yield 

E = O  
r " =  1 :  

for { 

for r" = 0 , i  

$ o = o ,  - - - 1 ,  d$o - 
dr" 

dlC.0 - $ ---00; * -  dr" 

Because (22)-(24) are ordinary differential equations, they can be solved by direct 
integration with boundary conditions given in (25) and (26). The results are 

$o = - ~ 3 + 2 ~ 2 - r " ,  ( 27 )  

(28) 

$ 2 -  - -3.&+;;4-LLp-1;2. 60 30 (29) 

- ~ 4 4 - + 3 + ~ 2 ,  
1 - 2 7  

6-2 
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The corresponding velocity q, for i = 0 , 1 , 2 , .  .., for each order can be obtained from 
(14) as follows : 

$$ = 3p2-45+ 1, (30) 

V, = -2r"2+3r^2-$, (31) 

p 2 - 4  - 4 4 - ; + 3 + 1 7 p 2 + l y "  20 15 . (32) 

A 

Notice that in the case of d - o(R,), the core solution is dependent both on 6 and 8, 
and is not considered in this work. 

3.3. TheJlow near two end zone8 

Because the lengthscale in the core flow is Ri, the stream function is independent of 
0 when R, 9 d (or A 4 1). However, the lengthscale in the two end zones is d,  so 
stream functions are dependent on both 0 and r in these zones. Redefine 0 in 
dimensionless form as follows : 

(33) 
- 6  e = -  

A '  
in the entry end: 

(34) 
A 6--7~ fg=- 

A '  
in the exit end: 

The akove definition not only readjusts the lengthscale of the flowAfield, but also 
assigns 0 = 0 to the two free surfaces. That is, in the case of A + 0, 8 varies !ram 0 
to co as fluid flows from the free surface in the entry end to the core zone ; and 0 varies 
from 0 to - co as fluid flows from the frFe surface in the exit end to the core zone. 

It is seen from (33) and (34) that a( )lac9 is the same for both the entry and exit end 
zones, so the governing equations for the two end zones bear the same form. 
Substituting (33) and (34) into (15) yields 

a+* 
ae ai?3 ap2 ar A2(Ar"+ 1) --,+ (A+ + 1) 7- 2A --x- 

a3+* a2$* 
(At+  q3-+A(ATA+ 1)2-- 

a 2 + *  a4+* a3+* 

a 4 4  a43 aF2 
A2(Ar"+ 1) - = (A++ ~ ) ~ - + ~ A ( A T A +  q3- -  

a4+* a4+* + 2(Ai!+ 1)2?+ 7. a$ a 8  ai! ae2 ar^2 a04 

a3** 
2A(AT^+ 1) - +A3(Ar"+ i)-+U2-- 

a+* a2+* 

ar" 
135) 

As in the core region, the solution is obtained by the power-series expansion in the 
small parameter A in the form of 

$Znd = $.,* = +o+A+l+A2$2+. . .  . (36) 

Substituting (36) into (35) and equating terms of like order in A yields 
(i) O(Ao):  
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FIQURE 9. Stream functions, e,, in the core zone. 

Similarly, substituting (33), (34) and (36) into (16)-(18) yields the zero-order 
boundary conditions in the form 

(38) $ - 0  - - - I ;  W O  - 
ai! t = O :  0 -  ? 

(39) a$o - * = o  --00; ai! 8 =  1 :  

with the matching conditions given by 

Iim $o+$.core or lim *0+-8(8-1)2 
i + *m i** m 

(ii) O(A'): 
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FIGURE 10. Dimensionless velocity distributions in the core zone. 

I f o  0 ' 1  

FIGURE 1 1 .  Zero-order finite-difference solution, $o, for Re = 100. 

with boundary conditions : 

for i: = 0 , l :  all., - 
$1 = a.L* - 0, 

for 8 = 0:  

and matching conditions : lim $l+p2(i:- 1)2, 
L * m  
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1 f o  o f t  

FIGURE 12. Zero-order finite-difference solution, $o, for Re = 200. 
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FIGURE 13. Zero-order finite-difference solution, $o, for Re = 400. 

where the plus signifies the entry end and the minus the exit end. It can be seen that 
governing equation (42) for contains the curvature effect (i?), but governing 
equation (37) for $o does not. 

3.4. Zero- and $first-order jinite-difference solutions in the two end zones 
The above governing equations together with the boundary and matching conditions 
for the two end zones are solved by the finite-difference method. Since detailed 
descriptions of the calculation procedures are given in Chan (1988), only brief 
remarks are summarized below. 

A 13-point finite-difference formula was used for each interior point, and a central- 
difference approximation for all boundary points. All results presented in this paper 
were obtained using a uniform 20 x 20 grid system. Checks were made by comparing 
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FIGURE 14. Zero-order finite-difference solution, $o, for Re = 200. 
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FIGURE 15. Dimensionless velocity distributions along the free surface at the entry end. 

the results from a 20x20 grid system with those from a 40x40 grid system, and 
agreement was very satisfactory. 

Point iteration in conjunction with the successive relaxation procedure was 
employed in the calculation. The convergence criterion a t  each point is 

where superscript n denotes $0 the iteration number, and subscript (j, k) denotes to 
the mesh location in the (6,  @-domain. The above finite-difference scheme has been 
used by Bye (1966), and more rccently by Schreiber & K?ller (1983). In  the present 
study, matching conditions for 6 + &  co were satisfied at Omax = 5-9. The CPU time 
on a CDC CYBER 180/840A was approximately 400 to 2000 s, depending on the Re 
and the relaxation parameter. 
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FIGURE 16. Dimensionless velocity distributions along the free surface at the exit end. 
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FIGURE 17. First-order finite-difference solution, for Re = 50. 

3.5. Results 
3.5.1. The core flow 

The streamfunction y2( for i = 0,1,2 in the core zone are given in (27)-(29) and 
presented in figure 9, which shows that values of $i decay rapidly as the order i 
increases. The velocities for i = 0,1,2 are given in (30)-(32) and presented in figure 
10. Figure 10 also shows the composite solution 7 resulting from the leading three 
terms for A = 0.35. It is seen that two curves for P and agree very well: that 
is, the zero-order solution is dominant. The velocity profile ofv, in figure 10 shows a 
zero-crossing point a t  Pc = +: that is, the inner fluid layer ( P  < 4,) moves in the same 
direction as the roller, and the outer fluid ( P  > P c )  moves in the reverse direction. The 
maximum reversed velocity is pmex = -+ a t  P = $. Note that V, in (30) is the same as 
that obtained by Brewster et al. (1959). 

1 
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1 f O  O f 1  

FIGURE 18. First-order finite-difference solution, el, for Re = 200. 

1 ? O  o f 1  

FIGURE 19. Streamlines for A = 0.2 and Re = 100: -, composite solution; ----, 
zero-order solution. 

3.5.2. Finite-diflerence solutions in the two end zones 
The zero-order streamlines, $,,, obtained by the finite-difference method are shown 

in figures 11, 12, and 13 for Re = 100, 200 and 400, respectively. These figures also 
show that fluid makes a smooth 180" turn a t  t,he entry end, but makes a 180" turn 
with a vortex cell and necking at the exit end. As Re increases, streamlines in the 
inner layer become closer together, but in the outer layer become farther apart. All 
these results are in good agreement with those obtained by the flow visualization 
results. 

The zero-order vorticity lines, o,,, for Re = 200 are shown in figure 14. It is seen 
that the vorticity a t  the exit end is much stronger than at the entry end, and vortex 
lines are almost parallel elsewhere. 

The dimensionless velocity distributions, c, along the two free surfaces are shown 
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FIGURE 20. Streamlines for A = 0.2 and Re = 200 : -, composite solution ; 
----, zero-order solution. 

in figures 15 and 16. Figure 15 shows that, as Re increases, decreases and the 
location of the peak value moves closer to the inner cylinder in the entry end. 
However, at the exit end shown in figure 16, as Re increases increases and the 
location of the peak value moves closer to the outer cylinder. 

obtained by the finite-difference method are shown 
in figures 17 and 18 for Re = 50 and 200, respectively. As mentioned above, the 
governing equations for contain the curvature (4) effect. It is seen from figures 17 
and 18 that there are several vortex cells with dividing lines between them. As Re 
increases, the vortex cell becomes larger and the dividing line moves towards the core 
zone in the entry end. But as Re increases, the number of vortex cells increases and 
the dividing line moves closer to the free surface in the exit end. 

The first-order streamlines, 

From (22), the composite solution resulting from the leading two terms is 

$* = $,+A$, (46) 

The streamlines of the composite solution for A = 0.2 and Re = 100 and 200 are 
shown in figures 19 and 20, respectively. In the figures, solid lines represent the 
streamlines obtained from (46) and dashed lines represent the zero-order solution. It 
is seen that $,, compares very well with $*. The only noticeable modification of 
appears at Re = 200, where there is an even smaller cell below the necking place at 
the exit end. This is also in good agreement with the visualization pattern shown in 
figure 3 (d). 

The velocity distributions at various 8-sections at  the entry and exit ends are 
shown in figures 21(a) and 21(b), respectively. The solid lines are the composite 
solution for A = 0.3; and dashed lines are the zero-order solution c. The figures, 
apart from the small modifications of the first-order solution at  the exit end, compare 
very well. That is, for small value of A ,  the zero-order solution is dominant and the 
curvature effect is negligible. 

3.5.3. Validation range of A 
The composite solution given in (46) has truncation error of O(A2). Since matching 

conditions require the existence of the core flow, it follows from (33) or (34) that the 
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range of A for which the asymptotic solution is valid can be obtained according to 
the following formula : 

(47 ) 

where A ,  is the upper limit of the aspect ratio A,  Len the convergence length of 8 in 
the entry end, L,, the convergence length of 8 in the entry end, L,, the convergence 
length of 8 in the exit end, and L,,,, = 0, the limiting case for which parallel core 
exists. That is, the evaluation of A ,  is based on an estimate of when the flow in the 
two end regions would just reach each other. Values of Len and L,, can be extracted 
from the results in figures 11 and 13 as follows : 

7c 
A ,  = 

Len +Lex +heore ’ 

for Re = 100: 

for Re  = 400: 

Len x 5,  L,, x 5 ; 

Len x 9, L,, x 5. 

It follows from (47) that A ,  = 0.31 for Re < 100, A ,  = 0.22 for Re < 400: that is, A ,  
decreases as Re increases. 

4. Comparison of experimental and theoretical results 
As described in the previous sections the streamlines obtained by asymptotic 

expansions in conjunction with the finite-difference method compare fairly well with 
the visualization patterns for the laminar regime. These include the parallel flow in 
the core zone, the presence of the vortices of the exit end and their absence from the 
entry end. Quantitative comparisons are also made by examining the velocity 
distributions a t  various radial sections, as is shown in figure 22, where the solid lines 
represent the composite solutions and the points represent the measurements for 
Re = 215 and A = 0.137. It is seen that comparisons of the velocity profiles, such as 
the zero-crossing points and maximum reversed velocity between the experimental 
and theoretical results agree very well. This further supports the notion that the 
curvature effect is negligible for small values of aspect ratio A .  

5. Summary 
The results of an experimental and theoretical study of the flow in a half-filled 

annulus between horizontal concentric cylinders with the inner one rotating and the 
outer one a t  rest have been presented. A laser-Doppler velocimeter was used to 
obtain the velocity distributions both in the laminar and turbulent regimes for 
aspect ratio A = 0.137. Dye visualizations were also used to observe the flow 
patterns. Theoretical results from asymptotic expansions in the limit of small aspect 
ratio A were obtained. Various features of the flow predicted in the analyses, in 
particular the presence of vortices in the exit end region and their absence from the 
entry end region, are confirmed by the experimental results. 

The following conclusions are drawn from this study: 
(a )  The thickness of the bottom fluid layer adjacent to the inner cylinder is about 

half of that adjacent to the inner one in the laminar regime. The inner (outer) fluid 
layer is thinner (thicker) in the turbulent regime than that in the laminar regime. 

( b )  Flow characteristics, such as zero-crossing point, and maximum reversed 
velocity and its radial position vary more significantly in the two end zones than in 
the core zone. Turbulent velocity near the inner cylinder is larger than that near the 
outer cylinder. 
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FIGURE 22. Comparison between composite solution (--) and experimental data (0) for 

Re = 215 and A = 0.137. 

(c )  For small aspect ratio A ,  the zero-order solution is dominant throughout the 
entire flow field. The first-order solution or curvature effect makes a small 
modification to the composite solution only in the exit end zone at high Re. Vorticity 
is strongest of the exit end. The upper limit for which asymptotic solutions are valid 
decreases with increasing Re ; for example, A ,  = 0.31 for Re < 200 and A ,  = 0.22 for 
Re < 400. 

( d )  Various flow regimes are identified from the measurements of the local moment 
coefficient and visualization results. These are : 

Ta < 92: laminar regime 
92 < Ta < 150: 

150 < Ta < 500: 
unstable laminar transition 
turbulent growth 

Ta > 500: fully turbulent. 
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There should be further investigation of the non-vanishing normal stress boundary 
conditions to determine the shape of the interfaces (without the assumption of flat 
free-surfaces). Because the flow field in the bottom core zone is parallel and 
independent of the Reynolds number, work is being done to obtain the zero-order 
solutions in the two end regions by the linearized method in the limit as Re -+ 0. 

Partial support of this work by China Steel Corporation in Taiwan through Grant 
TRC-75-06 is greatly acknowledged. 
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